
Edit Timelines
& Efficient
Streaming of
Media
Mangala Prabhu and Eric Reinecke

 Agenda

● Part I: Trailers at Netflix
● Part II: Edit Intelligence In Pipelines, OpenTimeLineIO

Trailers at Netflix

Mangala Prabhu, Compute and Storage Infrastructure @ Netflix

 What do we in CSI?

● Managing cloud infrastructure for media processing
● Cloud compute efficiency
● Secure cloud storage of media
● Media transport layer

Traditional studios - storage on premises

Artists Local storage

Netflix studios - storage in the cloud

Artists Location1

Artists Location 2

AWS storage

Proxy full length
video

Edits in Adobe
Premiere

Low quality
trailer

High quality full
length video

High
quality
trailer

Conform in
Adobe Premiere

Sound mixing

 Original trailer creation process

Proxy full length
video

Edits in Adobe
Premiere

Low quality
trailer

High quality full
length video

High
quality
trailer

Conform in
Adobe Premiere

Sound mixing

 Original trailer creation process

● 300 - 500 MB
● 1-13 episodes / Film
● 2 mins - 5 mins download time

Proxy full length
video

Edits in Adobe
Premiere

Low quality
trailer

High quality full
length video

High
quality
trailer

Conform in
Adobe Premiere

Sound mixing

 Original trailer creation process

● 300 - 500 MB
● 1-13 episodes / Film
● 2 mins - 5 mins download time

12+ days

Proxy full length
video

Edits in Adobe
Premiere

Proxy trailer

High quality full
length video

High
quality
trailer

Conform in
Adobe Premiere

Sound mixing

 Original trailer creation process

● 300 - 500 MB
● 1-13 episodes / Film
● 2 mins - 5 mins download time

12+ days

1 day

Proxy full length
video

Edits in Adobe
Premiere

Proxy trailer

High quality full
length video

High
quality
trailer

Conform in
Adobe Premiere

Sound mixing

● 300 - 500 MB
● 1-13 episodes / Film
● 2 mins - 5 mins download time

12+ days

● 25GB - 900 GB
● 1-13 episodes / Film
● 2-10 hours download time

1 day

 Original trailer creation process

Proxy full length
video

Edits in Adobe
Premiere

Low quality
trailer

High quality full
length video

High
quality
trailer

Conform in
Adobe Premiere

Sound mixing

● 300 - 500 MB
● 1-13 episodes / Film
● 2 mins - 5 mins download time

12+ days

● 25GB - 1TB
● 1-13 episodes / Film
● 2-10 hours download time

1 day

1 hour

 Original trailer creation process

Proxy full length
video

Edits in Adobe
Premiere

Low quality
trailer

High quality full
length video

High
quality
trailer

Conform in
Adobe Premiere

Sound mixing

 Editor’s pain point

● 300 - 500 MB
● 1-13 episodes / Film
● 2 mins - 5 mins download time

12+ days

● 25GB - 1TB
● 1-13 episodes / Film
● 2-10 hours download time

1 day

1 hour

Proxy full length
video

Edits in Adobe
Premiere

Low quality
trailer

High quality full
length video

High
quality
trailer

Conform in
Adobe Premiere

Sound mixing

 Editor’s pain point

● 300 - 500 MB
● 1-13 episodes / Film
● 2 mins - 5 mins download time

12+ days

● 25GB - 1TB
● 1-13 episodes / Film
● 2-10 hours download time

1 day

1 hour

 How do we do it?

● Which parts of the movie do we really want?
● How to make this trailer length high quality video appear as a full length video?

 How do we get the artist’s creative decisions?

● The artist decides on what goes into the trailer
● Adobe Premiere can export this decision into human readable format - an EDL

file

 EDL (Edit decision list)

● EDLs have the timecodes from the proxy source that made it in the trailer
and where it is placed in the trailer.

Input Time codes Output Time codes

 What bytes to download?

● EDL parser
○ Gives expected time ranges

● Movie metadata in DB
○ fps - map time interval to frames
○ Index file - map frame to a byte range

 What bytes to download? Parts needed for trailer

 What bytes to download? Parts needed for trailer

 Non interesting bytes

 What bytes to download? Parts needed for trailer

 Non interesting bytes

 Non interesting bytes

Non frame - header info

 Netflix tool - MezzFS (FUSE wrapper)

● Mounts cloud objects as local files
● Streams bytes from cloud storage to the user’s workstation
● Option to cache streamed bytes
● Streaming a cloud object from a byte offset
● Lets user set the context of “interesting bytes” versus

“non-interesting bytes”

 How to fake bytes?

● MezzFS (FUSE wrapper)

User’s workstation

VFS FUSE

libfuse

MezzFS

Userspace
Kernel

 How to fake bytes?

● MezzFS (FUSE wrapper)

User’s workstation

VFS FUSE

libfuse

MezzFS

Userspace
Kernel

Seeking bytes for trailer….

 How to fake bytes?

● MezzFS (FUSE wrapper)

User’s workstation

VFS FUSE

libfuse

MezzFS

Userspace
Kernel

stream of 0s

Seeking non trailer bytes….

Proxy full length
video

Edits in Adobe
Premiere

Low quality
trailer

High quality full
length video

High
quality
trailer

Conform in
Adobe Premiere

Sound mixing

● 300 - 500 MB
● 1-13 episodes / Film
● 2 mins - 5 mins download time

12+ days

● 25GB - 1TB
● 1-13 episodes / Film
● 2-10 hours download time

1 day

1 hour

 Original trailer creation process

Proxy full length
video

Edits in Adobe
Premiere

Low quality
trailer

High quality full
length video

High
quality
trailer

Conform in
Adobe Premiere

Sound mixing

● 300 - 500 MB
● 1-13 episodes / Film
● 2 mins - 5 mins download time

12+ days

● 25GB - 1TB
● 1-13 episodes / Film
● 2-10 hours download time

1 day

1 hour

 Trailer creation process now

EDL file

Proxy full length
video

Edits in Adobe
Premiere

Low quality
trailer

High quality trailer
length video

High
quality
trailer

Conform in
Adobe Premiere

Sound mixing

● 300 - 500 MB
● 1-13 episodes / Film
● 2 mins - 5 mins download time

12+ days

● 25GB - 1TB tens of GBs
● 1-13 episodes / Film
● 2-10 hours order of minutes

1 day

1 hour

 Trailer creation process now

EDL file

Original Model

Norm Macdonald (1 min Trailer)
● 6 episodes 268 GB / 2 hr 40 mins

Bordertown Recap(3 mins Recap)
● 11 episodes 985 GB / 9 hrs

Current Model

Norm Macdonald(1 min Trailer)
● 6 episodes 11.26 GB / 4 mins

Bordertown Recap(3 mins Recap)
● 11 episodes 70 GB / 18 mins

Headline

● Reduced download times
● No heavy disk space requirements
● Security advantage
● Lets creative folks to focus more on their creative work

 Benefits of the approach

Edit Intelligence
In Pipelines

Eric Reinecke, Encoding Team @ Netflix

What do we do?

● Video and Audio encoding at scale
● VMAF Perceptual Video Quality Assessment
● Spearhead development of new codecs
● Media asset analysis and title metadata management
● Workflow tools for the asset creation pipeline

 The Three Rewrites

 Part II Agenda

● Timeline aware pipelines
● Some of the ways the edit has moved through pipelines
● How does OpenTimelineIO enable timeline-aware pipelines

 What would my movie look like if I shipped it right now?

?
Pitch Play

 Where should I focus my energy?

How many frames do I need to animate for this shot?

What credits are shown at what time that I need to have
translated?

How many visual effects shots are we up to?

How long is the movie running right now?

What does the shot I’m reviewing look like in the context
of all the other shots?

 What are the “Interesting Bytes”?

15 Hours data transfer

22 minutes

All I have to do is get
an EDL?

CMX Editor CMX 3600 Keyboard

 Option 1: CMX EDL

EDL Format Auto-Assemble directives

AUTO_ASSEMBLE_DIRECTIVE: ‘’WAIT’'
/* Stop auto-assembly when the following edit is encountered. */
| ’’SKIP”
/* Do not perform the following edit. */
| ‘’BELL’'
/ *Sound an audible indicator before performing the following edit.*/
;

EDL sample

TITLE: dissolve_test_2
FCM: NON-DROP FRAME
001 TST V C 01:00:04:05 01:00:04:10 01:00:00:00 01:00:00:05
* FROM CLIP NAME: clip_A
002 TST V C 01:00:04:10 01:00:04:10 01:00:00:05 01:00:00:05
002 TST V D 010 01:00:08:04 01:00:08:14 01:00:00:05 01:00:00:15
* BLEND, DISSOLVE
* FROM CLIP NAME: clip_A
* TO CLIP NAME: clip_B
003 TST V C 01:00:08:14 01:00:08:19 01:00:00:15 01:00:00:20
* FROM CLIP NAME: clip_B

Credit: @GrahamFischer

Credit: @GrahamFischer

 Option 2: Advanced Authoring Format (AAF)

Credit: AAF Association - AAF Edit Protocol

Final Cut Pro X

 Option 3: Final Cut Pro XML

Final Cut Pro 7

<xmeml version="4">
 <sequence id="sequence-2">
 <name>dissolve_test_2</name>
 (...)
 <media>
 <video>
 <track>
 <clipitem frameBlend="FALSE">
 <name>clip_A</name>
 <file id="file-1"/>
 <duration>10</duration>
 <start>0</start>
 <end>-1</end>
 <in>86501</in>
 <out>86516</out>
 </clipitem>
 <transitionitem>
 <start>5</start>
 <end>15</end>
 (...)

 The EDL Landscape

Open Source API and interchange
format for editorial timeline

information.

 OpenTimelineIO

1. An API defining an editorial data model and functionality for working with it
2. An interchange format to communicate timelines between applications
3. A collection of adapters to import to, and export from that data model

Source: https://xkcd.com/927/

 OpenTimelineIO - The Timeline Continuum

Simple “Just Right” Complex

EDL OTIO AAF

 OpenTimelineIO

1. An API defining an editorial data model and functionality for working with it
2. An interchange format to communicate timelines between applications
3. A collection of adapters to import to, and export from that data model

 OpenTimelineIO - Status

● A Pixar-hosted Open Source project driven by real-world use cases
● Contains contributions from lots of studios and industry vendors
● In development since 2016, just released public beta 10
● Currently has a Python API with a C++ API in a preview branch
● Adapters for all the previously described formats
● More adapters can be provided using plugin system

 OpenTimelineIO - Model

OTIO Example: Clip

{
 "OTIO_SCHEMA": "Clip.1",
 "effects": [],
 "markers": [],
 “Media_reference”: (…)
 "metadata": {
 "cmx_3600": {
 "reel": "TST"
 }
 },
 "name": "clip_A",
 "source_range": {
 "OTIO_SCHEMA": "TimeRange.1",
 "duration": {"OTIO_SCHEMA": "RationalTime.1", "value": 10, "rate": 24.0},
 "start_time": {"OTIO_SCHEMA": "RationalTime.1","value": 86501, "rate": 24.0}
 }
}

OTIO Example: Media Reference

{
 "OTIO_SCHEMA": "ExternalReference.1",
 "name": bestmovie.mov,
 "target_url": "file:///Volumes/scratch/edl_presentation/bestmovie.mov"
 "available_range": {
 "OTIO_SCHEMA": "TimeRange.1",
 "duration": {
 "OTIO_SCHEMA": "RationalTime.1", "value": 173000,"rate": 24
 },
 "start_time": {
 "OTIO_SCHEMA": "RationalTime.1", "value": 0, "rate": 24
 }
 },
 "metadata": {
 "nflx": {
 "external_id": "33986271-053e-4240-bcc4-72217ce3b647","movie_id": 123456
 }
 }
}

 OpenTimelineIO - Find Items and Ranges Used

 OpenTimelineIO - Find Items and Ranges Used

 OpenTimelineIO - Update File References

#!/usr/bin/env python
import opentimelineio as otio

TODO: write me, I should simulate the part of Mangala’s workflow that updates file URLs

timeline = otio.adapters.read_from_file(“/Volumes/scratch/GF5_trailer.xml”)

 Viewer Application

 OpenTimelineIO - Participation Encouraged!

http://opentimeline.io
pip install opentimelineio

Headline

● Josh Minor @Pixar
● Stephan Steinbach @Pixar

 Acknowledgements

Headline

 Thank you

Questions?

